

JustFormed

Daniel Anglin – Project Officer
 danaidh@gmail.com
James Leonis – Technology Officer
 virus2566@gmail.com
Alex Rodriguez – Interface Officer
 phantomhawk88@yahoo.com
Timothy Turcich – Gameplay Officer
 poppyspy@hotmail.com

Page 2

Production Contract

We, the members of JustFormed as named herein, do agree to deliver a product that
meets the standards set forth by our Producers, and following the technological specifications
and outline found in this document.

We reserve the right to change those features this document describes at the discretion
of the group after having consulted and meeting the approval of the project’s Executive
Producers.

Daniel Anglin

James Leonis

Alex Rodriguez

Timothy Turcich

Executive Producer

Page 3

Table of Contents

Introduction
Synopsis …………………………………………………………………………………………………..4
Story ……………………………………………………………………………………………………... 5
Gameplay Narrative ……………………………………………………………………………………..6

The Game
Player Ships …………………………………………………………………………………………….. 7
Enemy Ships ……………………………………………………………………………………………. 8
Weapons ……………………………………………………………………………………………….. 10
Interface …………………………………………………………………………………………………. 8
Controls ………………………………………………………………………………………………… 11

Technical Aspects
Tools ……………………………………………………………………………………………………. 13
Technology …………………………………………………………………………………………….. 20
Code Architectural Overview ………………………………………………………………………… 21

Page 4

Synopsis

ZFighter is a 3D strategic combat flight simulator with several twists. The main objective
for the player is to search and destroy enemy hunters. The number of enemies that you fight will
depend on the difficulty setting and the stage. Each stage is cleared by defeating all of the
enemies in the stage.
 The game is played from a first person cockpit view with a third person minimap detailing
the entire playable area. The player can toggle between either a split-screen view of the cock pit
and map in seperate viewports and a 3rd person view in the other or a fullscreen view of the
cockpit and the map as a small minimap. The player is able to use lasers and mines to destroy
the enemy.

The combat arena is significantly different from other combat flight simulators because it
takes place inside a viscous material that hampers the detection of anything but large objects.
The player and enemy hunters must burrow through this material in order to find and destroy
each other. By tunneling, they leave behind a tunnel trail. These tunnels will be instrumental to
locating the enemy.

Due to the viscous world hampering detection, the tunnels are the key in discovering the
location of the enemy. Following the tunnels both allows the player and enemies to find their
opponents and gives them a significant speed boost. To counter this, the player can drop mines,
execute confusing tunneling maneuvers, and utilize power-ups to gain a temporary edge over the
computer player.

Power-ups allow the player to gain a temporary edge. Each is activated at the time of the
player’s choosing. These power-ups include the Sonar Ping, which can temporarily reveal the
location of all objects in the world, and the homing torpedo, which will follow a tunnel and blow up
when it encounters another object or the end of the tunnel.

The world is be populated by large detectable static objects. These obstacles require the
player to adjust their strategy to take them into account otherwise they will take damage or be
destroyed. ZFighter features three static maps and a randomly generated map option. Careful
planning of tunnel and mine placement will be the cornerstone of a winning strategy.

Page 5

Story

 ZFighter is the premier combat simulation system for the Space Fleet as well as many
non-military commercial groups desiring realistic tactical space flight training in an environment
more suitable for learning. Its current configurations allow for skills testing with a variety of input
mechanics to allow pilots to become accustomed to flying nimble, high speed craft that typically
have the classic control stick and throttle systems as well as the slower, less maneuverable
juggernauts that are used for hauling or defense systems that generally utilize more comfortable
keyed inputs due to their availability of space.
 ZFighter pits the user against a variety of opponents, environments and battle situations
to push them to expand their limits and skills further and further. Do not take this system lightly,
believing it to be merely a simple flying simulation, this is as real as it gets soldier! You will be
faced with enemies that are tougher and faster than you. You will be riding the razor edge every
minute you live within that chair. And if you want to survive to see another day, you better hope
you have what it takes to bring those buggers down!
 What? Are you still here? Get to work soldier! You have enemies to burn!

Page 6

Gameplay Narrative

The player starts off in a training exercise and must scan the area and destroy all
hostiles. By firing off sensors the player’s radar can detect helpful power ups and see hostiles
that cross the sensors path while it is active. Once an enemy is located and the players ship
approaches near a light trail appears that the enemy ships leaves behind. The player can only
see this light trail for a short distance and must follow it to get to the enemy. The enemy however
is also fighting against you and will be dropping mine traps along this trail to destroy you. The
player also has this light trail and if the enemy finds it, will pursue along it to destroy you with
lasers and seeking missiles. The player and enemy have similar weapons. The Seeking missiles
do not seek out the ship but seek out the trails behind the ship and follow along them until they
reach the trails creator. Once the missile gets tot the trail it splits and goes in both directions of
the trail. The missile and mines are quite powerful and it doesn’t take many of them to destroy
your target or be destroyed by them. They however are a limited supply depending on what type
of ship the player and the enemy are using and in the case of running out the player and enemy
will only have their laser weapons left to destroy each other with unless they pick up an ammo
power up which would restore some of ships payload. The other power ups available are armor
increase which repairs damaged armor and a Energy sensor pickup which will illuminate and
allow you to see where all enemies are for a short period of time.
 After the training exercise which is the first level of the game the same scenario will be
played out in the 2nd and 3rd levels except now obstacles such as asteroids appears around the
level area which is a large cube in shape. The first 3 levels represent the 3 different looks that
levels will take on, but as you go beyond those levels the look will recycle while more obstacles
and enemies are placed in for challenge.

Page 7

Entity Stat Descriptions

Vehicle Stats

Equipment Stats

Mass Equipment mass (in kg)
Max Velocity Maximum velocity threshold (to prevent equipment destruction)
Engine Force Maximum thruster output. (in N)
Damage Damage (to armor) caused by weapon
Sensing Radius Radius of sensor detection capabilities (in meters)

Mass Vehicle mass (in kg)
Max Velocity Maximum velocity threshold (to prevent vehicle damage)
Max Engine Force Maximum thruster output (in N)
Max Armor Total damage allowable before the ship is destroyed
Sensor Cool down Minimum time between sensor use (in seconds)
Laser Cool down Minimum time between laser shots (in seconds)
Missile and Mine Cool down Minimum time between special weapons use (in seconds)
Laser Damage Damage (to armor) caused by laser shots
Maximum Mines Maximum cargo for space mines
Maximum Missiles Maximum cargo for homing missiles

Page 8

Player Ships

Interceptor
The Interceptor is the smallest and lightest weight spacecraft that the player gets to use in the
game. This small ship has a limited weapons payload and its weapons are less damaging. The
ship’s speed and maneuverability by far makes up for its lack of weaponry.

Mass 1000kg
Max Velocity 300m/s
Max Engine Force 50N
Max Armor 50 Armor
Sensor Cool down 30 seconds
Laser Cool down 0.3 seconds
Missile and Mine Cool down 2 seconds
Laser Damage -17 Armor
Maximum Mines 5
Maximum Missiles 2

Cruiser
The Cruiser is average in respect to speed and weight in the player arsenal. It has a respectable
payload of weapons and it has a more powerful laser system then smaller ships like the
interceptor.

Mass 3000kg
Max Velocity 200m/s
Max Engine Force 100N
Max Armor 100 Armor
Sensor Cool down 30 seconds
Laser Cool down 0.3 seconds
Missile and Mine Cool down 2 seconds
Laser Damage -35 Armor
Maximum Mines 10
Maximum Missiles 5

Hulk
The Hulk is a battleship and while lacking speed and maneuverability has are large arsenal and
heavy armor.

Mass 10000kg
Max Velocity 100m/s
Max Engine Force 200N
Max Armor 300 Armor
Sensor Cool down 30 seconds
Laser Cool down 0.3 seconds
Missile and Mine Cool down 2 seconds
Laser Damage -50 Armor
Maximum Mines 20
Maximum Missiles 20

Page 9

Enemy Ships

Fish
The Fish is the smallest and lightest weight spacecraft that the Enemy gets to use in the game.
This ship swims and jukes through the darkness. It has a very limited payload of weapons, but in
turn is the fastest ship in the game.

Mass 800kg
Max Velocity 350m/s
Max Engine Force 60N
Max Armor 50 Armor
Sensor Cool down 30 seconds
Laser Cool down 0.2 seconds
Missile and Mine Cool down 2 seconds
Laser Damage -13 Armor
Maximum Mines 3
Maximum Missiles 1

Monkey
The monkey is the enemy’s mid-average type ship. It’s very similar to the player’s Cruiser,
except it specializes in mine laying so it has a larger payload of them.

Mass 3000kg
Max Velocity 200m/s
Max Engine Force 100N
Max Armor 100 Armor
Sensor Cool down 30 seconds
Laser Cool down 0.3 seconds
Missile and Mine Cool down 2 seconds
Laser Damage -35 Armor
Maximum Mines 20
Maximum Missiles 0

Elephant
The Elephant is a floating fortress and has the largest payload of weapons.

Mass 9000kg
Max Velocity 100m/s
Max Engine Force 125N
Max Armor 350 Armor
Sensor Cool down 30 seconds
Laser Cool down 0.3 seconds
Missile and Mine Cool down 2 seconds
Laser Damage -50 Armor
Maximum Mines 30
Maximum Missiles 30

Page 10

Enemy AI Behavior

Enemies in ZFighter will follow a simple pattern of behavior. There are three possible behavior
modes that any enemy can be in. Each enemy ship has a preferred state based on its vehicle
type.

Wandering State: The basic behavior mode of all enemies. This mode is in effect when
the enemy has not yet found a player’s trail and the player has not tripped a sensor of the
enemy’s.
 Enemies will begin in this mode.
 Enemies enter Wandering state if enemy loses player trail while in Hunting state.

Enemies attempt enter Wandering state if player has not tripped an enemy
sensor over one minute after enemy enters Trapping state.

Hunting State: The aggressive mode of enemy ships. This mode is in effect when an
enemy has found a player ship trail and begins following it in an attempt to destroy the
player.
 Enemies enter Hunting state when player trail is found.

Trapping State: The defensive mode of enemy ships. This mode is in effect when an
enemy’s sensor registers contact with a player or the player attacks the enemy. The
enemy will attempt to trap the player by laying space mines in its path.
 Enemies enter Trapping state when a sensor registers contact with player.

AI Behavior Preferences
 (% chance to remain in state)

Preference % will affect attempts to change
states based on time.

 Wandering Hunting Trapping
Fish 20% 70% 10%
Monkey 20% 40% 40%
Elephant 20% 10% 70%

Page 11

Weapons

Laser
The primary weapons of all ships are high powered laser cannons mounted to
the front of the vessel. These weapons vary in power based on the type of
ship in use and the stats can be seen on the vehicle statistic pages.

Tracking Missile
Tracking missiles if in range of an enemy ship’s light trail will follow the trail
and collide with anything along that path. Traps left along these trails can
deter the ship itself from being the target of the explosion.

Mass 50kg
Max Velocity 400m/s
Engine Force 25N
Damage -75% of Total Armor

Mine Trap
Ships can drop mines along their trails that act as traps for other ships
traveling along that trail. Lasers and missiles can destroy mines.

Mass 50kg
Damage -100% of Total Armor

Sensor
Sensors can be destroyed to counter the enemy placing them.

Sensing Radius 30000m

Page 12

Power Ups

Homing Missile
Bonus: +1 Homing Missile
Description: Give the player an auto targeting missile weapon that seeks the
enemy by following their light trail.

Laser Damage Increase
Bonus: + 25% to Ship laser damage.
Description: Depending on what Ship gets this pickup the laser the ship can
fire will increase its damage dealt to other ships by 25%
 This is not an actual powerup, the cake is a lie!

Care Package
Bonus: +25 to Ship Armor (the ships armor factor cannot go above its maximum
value)
Description: The care package is a repair kit for damaged ships in battle.

Mine Ammo
Bonus: +2 Mines (the mine payload of a ship cannot go above its maximum
carrying capacity)
Description: Mine ammo pickups giving more mines to a ship allow the ship to
defend it self longer.

Energy Detector
Bonus: This allows all ship trails in the area to become visible on radar. (Lasts 10
seconds)
Description: The energy detector detects all energy signatures in the level for 10
seconds. Displaying them to the ships radar and showing ship trails.

Page 13

Levels

Level 1: Planetary Orbit

 This battle takes place in a near a small planet. This is
a training exercise where the player must find a hostile in the
area and destroy them.

Enemies 1
Obstacles (space debris) No
Heavenly Bodies (planets / space stations) No

Level 2: Asteroid Field

 This battle takes place near a small asteroid field.
Several hostiles are in the region and must be destroyed.

Enemies 3
Obstacles (space debris) Yes
Heavenly Bodies (planets / space stations) No

Level 3: Space Station Alpha

 Following a distress call to its source near an old space
station you are set upon by several hostiles. Space station and
nearby planet affect ship movements and manueverability.

Enemies 6
Obstacles (space debris) Yes
Heavenly Bodies (planets / space stations) Yes

Level 4: Randomly Generated Level

 All levels beyond Space Station Alpha are randomly generated
and will have increasing difficulty levels by raising the number of
enemies, enemy strength and speed, and collideable objects. At this
point the game becomes an unending test of the player’s ability to
outperform the enemy ships using special tactics and manuevers until
the enemies become too quick to defeat.

Page 14

Game Physics and Math

Acceleration = Engine Force / Ship Mass
Velocity = Velocity + Acceleration * Delta Time
Position Change = Velocity * Delta Time

Functions for movment in 3D space
These Functions manipulate ship movement and orientation in the world

// gets the orientation and position of the opbject in the
world
D3DXMATRIX GetOrientation(void) {

 D3DXMATRIX Rotation(m_Orientation), Transform;
 Rotation._41 = Rotation._42 = Rotation._43 = 0;
 D3DXMatrixTranspose(&Rotation, &Rotation);
 D3DXMatrixIdentity(&Transform);
 Transform._41 = -(m_Orientation._41);
 Transform._42 = -(m_Orientation._42);
 Transform._43 = -(m_Orientation._43);
 D3DXMatrixMultiply(&Transform, &Transform,
&Rotation);
 return Transform;
}

// gets the orientation and position of the opbject in the
world
void SetOrientation(D3DXMATRIX *Orientation) {
 memcpy(&m_Orientation, Orientation,
sizeof(D3DXMATRIX));
}

//translates the object by its right vector
void TransX(float distance) {
 m_Orientation._41 += distance;
}

//translates the object by its up vector
void TransY(float distance) {
 m_Orientation._42 += distance;
}

//translates the object by its look vector
void TransZ(float distance) {
 m_Orientation._43 += distance;
}

//translates the object by a vector in its world space
void Trans(D3DXVECTOR3 distance)
{
 m_Orientation._41 += distance.x;
 m_Orientation._42 += distance.y;
 m_Orientation._43 += distance.z;
}

//rotates the object around its right vector
void RotateX(float angle)
{
 D3DXMATRIX Rotation;
 D3DXMatrixRotationX(&Rotation,
D3DXToRadian(angle));
 D3DXMatrixMultiply(&m_Orientation,
&m_Orientation, &Rotation);
}

//rotates the object around its up vector
void RotateY(float angle)
{
 D3DXMATRIX Rotation;
 D3DXMatrixRotationY(&Rotation,
D3DXToRadian(angle));
 D3DXMatrixMultiply(&m_Orientation,
&m_Orientation, &Rotation);
}

//rotates the object around its look vector
void RotateZ(float angle)
{
 D3DXMATRIX Rotation;
 D3DXMatrixRotationZ(&Rotation,
D3DXToRadian(angle));
 D3DXMatrixMultiply(&m_Orientation,
&m_Orientation, &Rotation);
}

Page 15

Interface

Main Menu

In this menu the user is able to choose if they would want to play campaign or skirmish mode,
also the user is able to choose between changing the options of the game, viewing the high
scores or exiting the game. Every time the user enters the main menu the word ZFighter is
flashed on the screen.

Page 16

Skirmish Menu

In this menu the user is able to choose the difficulty level and the level that the user would wish to
play “Skirmish” mode in. The user is able to move the difficulty left and right for more or less, the
user is also able to do this to choose the level they wish to play in. While selecting the level the
user is able to see a small image of the level that they are going to choose.

Page 17

Pause Menu

The user is able to use this menu while the user is playing the game and for whatever reason the
user must stop the game. In this menu the user can choose to resume the game, change the
game options, restart the fight that he or she is currently involved in or quit the user’s current
game.

Page 18

Key-Binding Menu

In this menu the user is able to determine what controller scheme he or she would prefer, the
user is able to choose between the keyboard and mouse or the XBOX 360 controller.

Looking at the Keyboard scheme…

Page 19

Looking at the XBOX 360 controller scheme…

The controls in the XBOX 360 controller scheme the player is able to change how they would
move their ship, for whatever reason imaginable, for example is they wanted to switch Tilt Up to
Left Thumb-stick down to Left Thumb-stick up, and switch Tilt Down to Left Thumb-stick up to Left
Thumb-stick down.

Page 20

Heads Up Displays
. H.U.D. # 1 (Heads Up Display)

 The player can switch between views at any time with the change view input.

A. Armor – once this bar reaches zero (or it empties) the user’s ship is killed.
B. Lives – once the bar reaches zero (or it empties) the user looses. If the user obtains more

than three lives the number of how many lives the user has is displayed on the top of the
life bar.

C. Laser – the user’s main weapon.
D. Sensor – an item that goes off when an enemy is too close to it, letting the user know the

enemy’s position.
E. Mine – a trap that the user and enemy leaves behind to explode whenever someone is

too close to it.
F. Homing missile – a weapon that will follow an enemy’s trail when fired (in the enemy’s

case this missile will follow a user’s turn).
G. Radar – a tiny radar that will let the user know where his or her trail is, it will also inform

the user when a sensor activates.
H. Reticle – a grid that informs the user where his or her laser and homing missile is aimed

towards.

Page 21

H.U.D. # 2 (Heads Up Display)

A. Armor – once this bar reaches zero (or it empties) the user’s ship is killed.
B. Lives – once the bar reaches zero (or it empties) the user looses. If the user obtains more

than three lives the number of how many lives the user has is displayed on the top of the
life bar.

C. Radar – a tiny radar that will let the user know where his or her trail is, it will also inform
the user when a sensor activates.

D. Laser – the user’s main weapon.
E. Sensor – an item that goes off when an enemy is too close to it, letting the user know the

enemy’s position.
F. Mine – a trap that the user and enemy leaves behind to explode whenever someone is

too close to it.
G. Homing missile – a weapon that will follow an enemy’s trail when fired (in the enemy’s

case this missile will follow a user’s turn).
H. Reticle – a grid that informs the user where his or her laser and homing missile is aimed

Page 22

Tools

Object Editor

A) Ships Mass in Kilograms.
B) The number representing the maximum velocity the ship is able to travel at.
C) Changes the value for the maximum force the ships engine exerts on the ship.
D) The radius from the center point of the mesh the represents the bounding circle for

collision detection.
E) The value representing the Armor Value of the ship. The higher the Armor the more hits

the ship can take in battle.
F) This represents the maximum number of missiles a ship entity can have.
G) This represents the maximum number of mines a ship entity can have.
H) Represents the time required before a mine of missile weapon can be fired again after

already deploying one.
I) The amount of armor damage the ship entity’s laser weapon will do to enemy ships.
J) The time before another laser can be fire.
K) The time before another sensor can be deployed.

Page 23

The Object Editor is going to Save and Read in data in this order.
Binary:

ShipType - short (2 bytes) this is going to be read in first so we know the proper ship template to
fill the rest of the data with.
Mass – int (4 bytes)
Max Veclocity – D3DXVECTOR3(sizeof(D3DXVECTOR3))
Max Engine Force - D3DXVECTOR3(sizeof(D3DXVECTOR3))
Health/Armor – int (4 bytes)
Max Missiles – int (4 bytes)
Max Mines- int (4 bytes)
Missile Mine Cool down – float(4 bytes)
Sensor Cool Down – float(4 bytes)
Laser Damage – int (4 Bytes)
Laser cool down – float (4 bytes)

10 different things altogether.

This is a sample XML file format for players and enemies the Type will be the difference

<Ship Mass= “0” MaxVelX=”0” MaxVelY=”0” MaxVelZ=”0” MaxForceX=”0” MaxForceY=”0”
MaxForceZ=”0”>
 <Type Health=”0” MaxMissiles=”0” MaxMines=”0” MineMissileCoolDown=”0”
SensorCoolDown=”0” LaserDamage=”0” LaserCoolDown=”0”>
 </Type>
</Ship>

Weapon

<Weapon Mass= “0” MaxVelX=”0” MaxVelY=”0” MaxVelZ=”0” MaxForceX=”0” MaxForceY=”0”
MaxForceZ=”0”>
 <Type Damage=”0” >
 </Type>
</Weapon>

<Sensor Range= “0”>
</Sensor>

Page 24

Particle Editor

A. The Image used for the particle.
B. The specific behaviors displayed by the particle’s emitter. Also a the play button allows

the user to see the particle emitter in action.
C. The mode that is going to be used by the particle.
D. The starting values that the particles are going to have (for color and size).
E. The ending values that the particles are going to have (for color and size).
F. The lifespan of each particle.
G. Allows the user to randomize any of the particle’s values.

Page 25

The Particle Editor will output in both binary and xml from the menu toolbar. The xml format is
as follows:

<Particle>

 <Filename>burst.jpg</Filename>
 <KeyColor R="0" G="0" B="0">

 <Looping>false</Looping>
 <Radial>false</Radial>
 <BlendModes SrcBlend=”0” DestBlend=”0” />
 <SpawnRate>20.00</SpawnRate>
 <Lifespan>3.40</Lifespan>
 <Variance>2.00</Variance>
 <Start>
 <Color A="255" R="255" G="0" B="0">
 <Scale>1.00</Scale>
 </Start>
 <End>
 <Color A="255" R="255" G="0" B="0">
 <Scale>1.00</Scale>
 </End>
</Particle>

Page 26

World Editor

The main level editing will be done in one window. The user builds the world by selecting them
from the object list, maneuvering the cursor to the desired spot, and laying down the object.

Page 27

GUI Components
Editor Window

• Editing Plane Grid
This plane grid, shown more prominently than the others, serves to visually orient
the user to where, in the context of the other planes, the object locations and the
cursor location. This plane will move vertically with the cursor, and will always be
on the bottom of the cursor.

• The Editing Cursor
This is the main editing cursor. It shows a visual representation of where objects
will be placed. It will always be atop the Editing Plane, so the user will not get
disoriented.

Object Selector
This tree-view serves as the object selector. This is enumerated from the object editor
files.

Navigation Panel
• Cursor Movement

This moves the cursor along the Editing Plane grid in the selected direction
• View Rotation

This rotates the view of the level, so the user can get a different perspective.
Rotate Left / Rotate Right

Rotates the view 90o to the left or right
Tilt Forward / Tilt Back

This rotates the view slightly up or down, giving the user various
degrees of viewpoint.

• Zoom
Zooms the view of the level in or out

• Working Plane
Shifts the Editing Grid plane up or down

• Place Object
Places an object selected within the Object Selector in the world

Page 28

This is the World Editor’s file output schema. This will be outputted into binary and XML.

Note: Empty world tiles are ignored by the game, and not exported by the editor. This reduces
the size of the level file significantly and aids in readability and editability. File extensions are not
final.

<Map>

 <Instances>

 <Statics>

 <Object Filename=”.\Objects\Asteroid.sta” Index=”0”></Object>

 </Statics>

 <Enemies>

 <Object Filename=”.\Objects\Minion.nmy” Index=”0”></Object>

 </Enemies>

 <Items>

 <Object Filename=”.\Objects\Mine.itm” Index=”0”></Object>

 </Items>

 </Instances>

 <ObjectLocation>

 <Index X=”0” Y=”2” Z=”1”>

 <Orientation X=”-160” Y=”30” Z=”45”></Orientation>

 <Object Type=”Static”>0</Object>

 </Index>

 <Index X=”5” Y=”1” Z=”0”>

 <Orientation X=”90” Y=”-30” Z=”-160”></Orientation>

 <Object Type=”Enemy”>0</Object>

 </Index>

 <Index X=”2” Y=”5” Z=”3”>

 <Orientation X=”100” Y=”-10” Z=”30”></Orientation>

 <Object Type=”Item”>0</Object>

 </Index>

 <Index X=”5” Y=”5” Z=”5”>

 <Orientation X=”90” Y=”90” Z=”-90”></Orientation>

 <Object Type=”Misc”>0</Object>

 </Index>

 </ObjectLocation>

</Map>

Page 29

Technology Summary

Graphics Engine
• ZFighter features a fully implemented 3D environment engine. Utilizing a unique camera

system, ZFighter will provide you with multiple ways to see the action. DirectX is the
main renderer of the system.

Tile System
• ZFighter includes a Map Editor that is also is fully 3D. It features an easy to understand

interface and an intuitive design for navigating and placing objects in the world. It will be
able to use the data provided inside the Object editor, and be able to export level data in
XML and binary formats.

Sound Engine
• ZFighter features immersive 3D sound effects, mp3 based music playback, and ID based

sound storage. This will support volume control and 3D panning of sounds. FMod
provides the core functionality.

Particle Engine
• ZFighter features a particle manager which handles the creation, updating, and rendering

of particle systems. Features include lifetime variance, color variance, spawn rate control
and different blending modes.

Animated Textures
• ZFighter features a unique implementation of DirectShow to provide textures that can be

rendered in a Direct3D environment. This is accomplished by rendering videos to
textures. Utilizing this, the menu system will feature gameplay movies in the background.

Asset Caching
• ZFighter utilizes a cache system to store game assets. Game objects are then instanced

from these cached items, greatly reducing load time and providing a centralized
management system for all game assets.

Message and Event System
• ZFighter features a robust internal communication system that aids in the interoperability

of its modules. This allows each module more independence, and thus eases the ability
to find and eliminate costly bugs.

Physics System
• ZFighter utilizes the physical properties of each object to determine movement and

control. Physical properties, such as mass, inertia, gravity, and force will all play a part in
determining how each ship handles.

Game State Machine
• ZFighter utilizes game states to control the menu system and gameplay.

Page 30

Code Architectural Overview

CBaseMessage

Description: This module provides the foundation for any given message, as well as holding an
enumeration of all message types that have been created. Because it is the base of which all
other messages are inherited from, the core message functionality is enumerated here.

Stipulations: The MESSAGEID type is set to unsigned int. An enum defines all of the message
ID types.

Interface: The module only contains functions to set and retrieve the message type. Because this
is an interface for other messages, thus will never be called by outside code.

MEMBERS

Name Type Description

m_Msg MESSAGEID ID of the message based upon the enumeration contained within the
base message module

METHODS

Return Name Type/Parameters Description

void SetMessageID MESSAGEID msg Allows the child message to set its type upon
creation.

MESSAGEID GetMessageID void Allows for external modules to access a given
messages type.

enum { MSG_CREATE_PLAYER = 0, MSG_DESTROY_PLAYER = 1, MSG_CREATE_ENEMY
= 2, MSG_DESTROY_ENEMY = 3, MSG_MAX}

SUB-MODULES

Page 31

CCreatePlayerMessage: public CBaseMessage

Description: This module allows the use of the messaging system to create player ships.

Interface: The module has only a constructor and destructor; no parameters are stored within this
message type.

CDestroyPlayerMessage: public CBaseMessage

Description: This module allows the use of the messaging system to destroy player ships.

Interface: The module has only a constructor and destructor, no parameters are stored within this
message type.

Page 32

CCreateEnemyMessage: public CBaseMessage

Description: This module allows the use of the messaging system to create enemy ships.

Interface: This modules constructor receives the 3D vector position and orientation of the enemy
ship to be created. An accessor is used to retrieve that information for use in the creation
process.

MEMBERS

Name Type Description

m_vecCoords D3DXVECTOR3
(don’t make it a
pointer)

This parameter stores the world location that the enemy should
be created at.

m_vecOrient D3DXVECTOR3 X, Y, Z Rotation values stored in a vector

m_nEnemyType short Type of enemy ship

METHODS

Return Name Type/Parameters Description

void CCreateEnemyMessage D3DXVECTOR3 vecCoords The constructor of the
message receives the
world coordinates of the
enemy ship.

D3DXVECTOR3 GetParam void Accessor for the world
coordinates of the ship

SUB-MODULES

Page 33

CDestroyEnemyMessage: public CBaseMessage

Description: This module allows the use of the messaging system to destroy enemy ships.

Interface: This module’s constructor receives a pointer to the enemy ship that is to be destroyed.
An accessor is used to retrieve that pointer.

MEMBERS

Name Type Description

m_pParam CEnemyShip* The pointer of the enemy ship to be destroyed.

METHODS

Return Name Type/Parameters Description

void CDestroyEnemyMessage CEnemyShip*
pParam

The constructor of the message
recieves a pointer of the enemy to be
destroyed.

CEnemyShip* GetParam void Accessor for the enemy ship to be
destroyed.

SUB-MODULES

Page 34

Module Diagram for Message System

Page 35

CGameTime

Description: This is the interface for all time related functions. It is responsible for loading and
unloading the high resolution timer, computing the frame time delta, calculating the frame rate,
and calculating the time based multiplier.

Stipulations: As a singleton, only one of these objects will ever exist in the lifetime of the
program. Calling the GetInstance() function is necessary as it not only retrieves this object, but
will also initialize the high resolution timing if it hasn’t been initialized yet. The Release() function
must likewise be called to restore the timing resolution.

Interface: This class will need to be accessed by any other class needing to calculate time based
events and/or time based movement.

MEMBERS

Name Type Description

m_Instance CGameTime Stores the instance of the timer

m_bInit bool Stores whether the timer has been initialized

m_TimeCaps TIMECAPS Holds the windows TIMECAPS options. This is used to load and
unload the high resolution timing for the game.

m_dwLastTime DWORD Stores the last time the timer was updated

m_dTimeStep double Stores the time step between the last update and the current update

m_dwFrameRate DWORD Stores the current framerate

m_dTimeMultiplier double Stores the time based fraction used to calculate time based
functions, such as movement

METHODS

Return Name Type/Parameters Description

CGameTime* GetInstance void Gets the instance of the CGameTimer. If not
previously instanced, sets up the high resolution
timing

void Release void Releases any memory used by the timer and unloads
the high resolution timing

void Update void Updates the timer by one frame

SUB-MODULES

Page 36

CFMod

Description: This wrapper holds FMod sound functionality. All 2D and 3D sounds are handled
within this module. All of the sounds are loaded into an array via the CreateSound function. This
function returns an integer ID that will be used to access a particular sound for various functions.

Stipulations: This module is a singleton, and must be initialized by the game class prior to use. It
must also be shutdown prior to exit of the game.

Interface: This module contains functions for modifying and playing audio files. When something
calls for a sound to be played, they will access the singleton interface to play the sound.

MEMBERS

Name Type Description

m_pInstance CFMod* Pointer to the of the CFMod class

m_vSounds Vector<FMOD::Sound*> Storage of all sounds used by the module.

m_pSys FMOD::System* Pointer to FMod system object

m_pMusicChannel FMOD::Channel* Pointer to FMod channel object

m_Result FMOD_RESULT FMod result for error handling

METHODS

Return Name Type/Parameters Description

CFMod* GetInstance void Gets the instance of the CFMod
module. If it does not exist, it is
created.

Void DeleteInstance void Deletes the instance

Bool Init int nMaxChannels,

FMOD_INITFLAGS flags

Initialize the fmod system with max
number of channels and special
flags.

Int CreateSound char* szFilename Returns the vector index of the
newly created sound

bool PlaySound3D int nSoundID,

D3DXVECTOR3
vSoundPos

Plays the sound at the parameter
index

bool PlayLoop Int nSoundID Plays a looping track

Bool PlaySound2D Int nSoundID Plays a normal sound

Bool Stop Int nSoundID Stops a specific sound given by it’s
ID

SUB-MODULES

Page 37

CDirect3D

Description: This is the main wrapper for all Direct3D functionality. Anything and everything that
is required to interface with the Device will utilize this wrapper.

Stipulations: As a singleton, this class will exist only once throughout the lifetime of the program.
Calling the GetInstance() function will retrieve a pointer to this object. However, the Initialize()
function must be called before any Direct3D functionality can be used. The Shutdown() function
must likewise be called at the end of the program to properly release the modules used by
Direct3D.

Interface: This class will be accessed by any module requiring the core of Direct3D. Most of the
functionality will be used by other DirectX subsystems, and other modules will primarily use the
render functions.

MEMBERS

Name Type Description

m_Instance CDirect3D* Instance of the CDirect3D class

m_lpDirect3D LPDIRECT3D9 Pointer to the Direct3D object

m_lpD3DDevice LPDIRECT3DDEVICE Pointer to the Direct3D device

m_lpSprite LPD3DXSPRITE Direct3D sprite interface

m_lpFont LPD3DXFONT Direct3D font interface

m_lpLine LPD3DXLINE Direct3D line interface

m_PresentParams D3DPRESENT_PARAMS The Device’s presentation parameters

METHODS

Return Name Type/Parameters Description

CDirect3D* GetInstance void Returns the instance of the
CDirect3D object

bool Initialize HWND hwnd,

int nWidth,

int nHight,

bool bWindowed

bool bVsync

Initializes Direct3D

void Shutdown void Shuts down Direct3D

void Clear unsigned char cRed,

unsigned char cGreen,

unsigned char cBlue

Clears the screen to the given color

bool DeviceBegin void Signals the device to begin rendering

bool SpriteBegin void Readies the sprite for rendering

bool LineBegin void Readies the line for rendering

bool DeviceEnd void Signals the device to stop rendering

Page 38

CDirect3D Methods Continued

bool SpriteEnd void Stops the sprite renderer

bool LineEnd void Stops the line renderer

void ChangeDisplayParam int nWidth,

int nHeight,

bool bWindowed

Changes the display parameters

void DrawRect RECT rRect,

unsigned char cRed,

unsigned char cGreen,

unsigned char cBlue

Draws a rectangle with the given
colors

void DrawLine int nX1,

int nY1,

int nX2,

int nY2

unsigned char cRed,

unsigned char cGreen,

unsigned char cBlue

Draws a line from (x1, y1) to (x2,
y2) in the given color

void DrawText char *lpzText,

int nX,

int nY

unsigned char cRed,

unsigned char cGreen,

unsigned char cBlue

Draws text starting at the point
(x, y) in the given color

void CreatePrimitive PRIMITIVE_TYPE Type,

LPD3DXMESH* ppMesh

Creates a basic DirectX primitive
mesh of Type, and sets it to
ppMesh

void SetRenderState D3DRENDERSTATETYPE
Type,

DWORD dwValue

Changes the render state of the
device

void GetRenderState D3DRENDERSTATETYPE
Type,

DWORD* pdwValue

Get the render state of type
Type, and set it to pdwValue

void Present RECT* rDestRect Presents the completed render.
rDestRect describes where in the
client area to render to, or the
whole client area if it is NULL

SUB-MODULES

enum PRIMITIVE_TYPE {PRIM_BOX, PRIM_SPHERE, PRIM_CYLINDER,PRIM_TEAPOT,
PRIM_POLYGON, PRIM_TORUS, PRIM_MAX };

Page 39

CDirectShowFilter

Description: This is the custom video filter to be used by DirectShow. Much like defining the
vertex struct for Direct3D, DirectShow requires this custom filter definition to play back video.

Stipulations: This will never be called inside the program. It is used by DirectShow to validate,
parse, and render the video. DirectShow will call all of these functions itself internally. Because
DirectShow initializes and handles all filter memory internally, and they last for the life of the
program, the filter must never be cleaned up manually.

Interface: This module will exclusively be used by DirectShow to store and play videos. The
texture will be referenced within CAnimatedTexture.

MEMBERS

Name Type Description

m_pTexture IDirect3DTexture9* Texture where the movie playback will occur on

m_Format D3DFORMAT Stores texture properties

m_lVideoWidth LONG Pixel width of the video

m_lVideoHeight LONG Pixel height of the video

m_lVideoPitch LONG Video surface pitch

METHODS

Return Name Type/Parameters Description

HRESULT CheckMediaType const CMediaType *
MediaType

Checks the contents of the media’s
interface for video

HRESULT SetMediaType const CMediaType *
MediaType

Parses MediaType for video information
and assigns it to the texture

HRESULT DoRenderSample IMediaSample
*pMediaSample

Copies the video data onto the texture
for rendering

SUB-MODULES

Page 40

CAnimatedTexture

Description: This handles all DirectShow methods for video playback. Because the movie will be
rendered to a texture, this will allow both Direct3D and DirectShow to cooperate at the same time
without conflicts. This is advantageous because we can then leverage DirectShow to create
animated textures in Direct3D.

Stipulations: Because of how DirectShow handles memory management, these textures must
not be manually released. Load must be called with a valid file name to the movie file to properly
set up the animated texture. Unload must be called to clean up the Media subsystems and the
graph system.

Interface: This will be used by the CAttractState menu class for the background movie, but its
functionality can be extended to any object that uses texture data and wants it to be animated.

MEMBERS

Name Type Description

m_pGraph IGraphBuilder* Used to register the filter and to load media

m_pMediaControl IMediaControl* Interface used to control media playback

m_pMediaPosition IMediaPosition* Used to determine the position in the media

m_pMediaEvent IMediaEvent* Interface to handle media events, such as when the
playback is complete

m_pTexture IDirect3DTexture9* Texture that will be rendered to

METHODS

Return Name Type/Parameters Description

bool Load char * szFilename Loads a file for playback

bool Unload void Frees all necessary data

bool EndOfAnimation void Returns true when the animation has
finished playback

void Play void Plays the animation

void Stop void Stops the animation

void Restart void Restarts the animation

void GoToTime REFTIME Time Go to a specified time within the
animation

IDirect3DTexture9* GetTexture void Returns the texture that has been
rendered

SUB-MODULES

Page 41

CCamera

Description: This is the basic camera class. All rendering will be done inside the Render
function. Because all rendering is handled here, this allows the possibility to have multiple
cameras throughout the world, each being fully functional. The m_prViewportRect member
points to what part of the client window that the camera should render to.

Stipulations: CCamera is passive. It requires itself to either be bound to another object or moved
by the actions of another update. Before the camera can be used, the BuildPerspective function
must be called to set up the Projection matrix. The view matrix must also be populated for the
camera to work properly.

Interface: This is used whenever some rendering is to take place.

MEMBERS

Name Type Description

m_matProjection D3DXMATRIX The camera’s projection matrix

m_matView D3DXMATRIX The camera’s view matrix

m_prViewportRect RECT* Where in the window client to render. Default is set
to NULL to render to the entire screen

Page 42

CCamera METHODS

Return Name Type/Parameters Description

void BuildPerspective float fFOV,

float fAspect,

float fZNear,

float fZFar

Builds the perspective matrix based on
the parameters

void RotateLocalX float fX Rotates the camera’s local pitch

void RotateLocalY float fY Rotates the camera’s local yaw

void RotateLocalZ float fZ Rotates the camera’s local roll

void TranslateLocal D3DXVECTOR3
vAxis

Translate the camera’s local position
by vAxis

void TranslateLocalX float fX Translate the camera’s local X position
by fX

void TranslateLocalY float fY Translate the camera’s local Y position
by fY

void TranslateLocalZ float fZ Translate the camera’s local Z position
by fZ

void RotateGlobalX float fX Rotates the camera’s global pitch

void RotateGlobalY float fY Rotates the camera’s global yaw

void RotateGlobalZ float fZ Rotates the camera’s global roll

void TranslateGlobal D3DXVECTOR3
vAxis

Translate the camera’s global position
by vAxis

void TranslateGlobalX float fX Translate the camera’s global X
position by fX

void TranslateGlobalY float fY Translate the camera’s global Y
position by fY

void TranslateGlobalZ float fZ Translate the camera’s global Z
position by fZ

void Render void Renders the scene into the window
client area

SUB-MODULES

Page 43

Module Diagram for Wrapper Singletons

Page 44

CXInput

Description: This module contains all functionality of handling DirectX XInput. This module is used
by the player, menus and anything else that needs input. This module contains specifics
pertaining to the XBOX360 controller input.

Stipulations: As a singleton, this object must be created and can exist only once within the entire
system. Invoking the GetInstance() method will either create or retrieve the object and its
functionality can be accessed through the result. At the end of its use, this object’s
DeleteInstance() method should be called, and all pointers to the object should be set to NULL
and not used otherwise risking access of bad memory.

Interface: This module will not need to be accessed by any other modules though it will be
frequently called upon for its functionality. Most of the time this module’s functionality will be
accessed by the player class.

MEMBERS

Name Type Description

m_xisControllerState XINPUT_STATE Stores the current controller state.

m_wPrevControllerState WORD Stores the previous controller state.

m_pInstance CXInput * Pointer to the main instance for XInput.

m_vibControllerVibration XINPUT_VIBRATION Holds the value of the controller’s vibration (When
vibration right and left is set to zero, the vibration is
stopped)

Page 45

CXInput METHODS

Return Name Type/Parameters Description

static CXInput* GetInstance void Get the instance of the CXInput Class.

void DeleteInstance void Deletes the instance.

XINPUT_STATE GetXInputState void This is the function is called when ever

the input from the controller needs

to be known. This function also

checks if the controller is still
connected.

void SetControlVibration Int nLowFreq – the
frequency given to the left
vibration motor.

Int nHighFreq – the
frequency given to the
right vibration motor.

(left, right)

This function initializes the game with
information pertinent to help initialize
other key modules. This function
handles most initialization in the game.

bool CheckButton WORD wButton – the
button be checked if
pressed.

This function checks to see if the
button sent in is being pressed.

bool CheckBufferedButton WORD wButton – the
button be checked if
pressed.

This function checks to see if the
button sent in is being pressed. This
function will only detect the button once
if the button is held down.

unsigned char CheckTrigger WORD wButton – the
button be checked if
pressed.

Int nTrigger – Determines
which trigger is being
pressed.

This function checks to see if a trigger
has been pressed and returns the
sensitivity.

short CheckThumbMoving Int nThumbStick –
Determines which
thumbstick is being
moving. (what if BOTH
are??)

This function checks to see which
thumb-stick is being used and its
sensitivity then returns the current
value of the thumb-stick that it is
checking for.

SUB-MODULES

Page 46

CGameState

Description: This is the game state base class. It contains no information. Its purpose is to
provide a basic template for all state modules that will inherit from this.

Stipulations: This module is an abstract base of the game state system. Each game state will
inherit its functionality from this module.

Interface: The functions in this class are virtual functions that must be redefined by child classes.

METHODS

Return Name Type/Parameters Description

bool Init void This function initializes the state upon switching to
the state.

void Update void This function handles time based update
mechanics.

void Exit void This function handles the shutdown of the state
before a new state is activated.

Void Input void Because only the top most state should receive
input

Void Render void

Page 47

CMainMenu: public CGameState

Description: This module contains the main menu and the functionally that is going to be provided
by it.

Stipulations: As a singleton, this object must be created and can exist only once within the entire
system. Invoking the GetInstance() method will either create or retrieve the object and its
functionality can be accessed through the result. At the end of its use, this object’s
DeleteInstance() method should be called, and all pointers to the object should be set to NULL
and not used otherwise risking access of bad memory.

Interface: This module will have to be accessed by the other menus that will branch off this menu.

MEMBERS

Name Type Description

m_xisControllerState XINPUT_STATE Stores the current controller state.

m_pInstance CMainMenu * Pointer to the main instance of the Main Menu.

m_nSelectedOption int Determines which option in the main menu is
selected.

METHODS

Return Name Type/Parameters Description

static
CMainMenu*

GetInstance void Get the instance of the CMainMenu
Class.

void DeleteInstanceNOOO!!! void Deletes the instance.

bool Init void Initalizes the state.

void Update void This function updates the
CMainMenu Class.

void Exit void Exits the state.

SUB-MODULES

Page 48

COptionsMenu: public CGameState

Description: This module contains the options menu and the functionally that is going to be
provided by it.

Stipulations: As a singleton, this object must be created and can exist only once within the entire
system. Invoking the GetInstance() method will either create or retrieve the object and its
functionality can be accessed through the result. At the end of its use, this object’s
DeleteInstance() method should be called, and all pointers to the object should be set to NULL
and not used otherwise risking access of bad memory.

Interface: This module will have to be accessed by the other menus that will branch off this menu.

MEMBERS

Name Type Description

m_xisControllerState XINPUT_STATE Stores the current controller state. Why isn’t this just
a pointer to the CXInput singleton??

m_pInstance COptionsMenu * Pointer to the main instance of the Options Menu.

m_nSelectedOption int Determines which option in the main menu is
selected.

METHODS

Return Name Type/Parameters Description

static COptionsMenu* GetInstance void Get the instance
of the
COptionsMenu
Class.

Void DeleteInstance void Deletes the
instance.

Void Update void This function
updates the
COptionsMenu
Class.

Private Void SetSFXVolume int nVolume Sets the sound
effects volume.

Private Void SetVolume int nVolume Sets the volume
for the game.

SUB-MODULES

Page 49

CSkirmishMenu: public CGameState

Description: This module contains the skirmish menu and the functionally that is going to be
provided by it.

Stipulations: As a singleton, this object must be created and can exist only once within the entire
system. Invoking the GetInstance() method will either create or retrieve the object and its
functionality can be accessed through the result. At the end of its use, this object’s
DeleteInstance() method should be called, and all pointers to the object should be set to NULL
and not used otherwise risking access of bad memory.

Interface: This module will have to be accessed by the other menus that will branch off this menu.

MEMBERS

Name Type Description

m_xisControllerState XINPUT_STATE Stores the current controller state.Why not
CXInput*??

m_pInstance CSkirmishMenu * Pointer to the main instance of the Skirmish Menu.

m_nSelectedOption int Determines which option in the main menu is
selected.

m_nLevel int Holds level data until the user decides to create it.

m_sDificulty Short Holds the difficulty for the new level.

METHODS

Return Name Type/Parameters Description

static CSkirmishMenu* GetInstance void Get the instance of the
CSkirmishMenu Class.

Void DeleteInstance void Deletes the instance.

Void Update void This function updates the
CSkirmishMenu Class.

Private Void SetLevelDificulty short sLevelDificulty –
the difficulty of the new
level.

This function sets the difficulty of
the level that is about to be
created.

Private Void SetLevelSelected Int nLevelSelected –
the level that was
selected for skirmish.

This function sets the level that is
going to be used for skirmish.

Private Void CreateLevel Void This function creates the level
that the user just described.

SUB-MODULES

Page 50

CCredits: public CGameState

Description: This module contains the credits that are going to be displayed on the screen.

Stipulations: As a singleton, this object must be created and can exist only once within the entire
system. Invoking the GetInstance() method will either create or retrieve the object and its
functionality can be accessed through the result. At the end of its use, this object’s
DeleteInstance() method should be called, and all pointers to the object should be set to NULL
and not used otherwise risking access of bad memory.

Interface: This module will have to be accessed by the other menus that will branch off this menu.

MEMBERS

Name Type Description

m_xisControllerState XINPUT_STATE Stores the current controller state. Why not
CXInput*??

m_pInstance CCredits * Pointer to the main instance of the Credits.

METHODS

Return Name Type/Parameters Description

static CCredits* GetInstance void Get the instance of the CCredits
Class.

void DeleteInstance void Deletes the instance.

void Update void This function updates the CCredits
Class.

SUB-MODULES

Page 51

CHighScores: public CGameState

Description: This module contains the highscores that are going to be displayed on the screen.

Stipulations: As a singleton, this object must be created and can exist only once within the entire
system. Invoking the GetInstance() method will either create or retrieve the object and its
functionality can be accessed through the result. At the end of its use, this object’s
DeleteInstance() method should be called, and all pointers to the object should be set to NULL
and not used otherwise risking access of bad memory.

Interface: This module will have to be accessed by the other menus that will branch off this menu.

MEMBERS

Name Type Description

m_xisControllerState XINPUT_STATE Stores the current
controller state. . Why not
CXInput*??

pInstance CHighScores * Pointer to the main
instance of the High
Scores.

m_plyPlayerList vector<PlayerData> Vector of PlayerData that
holds all the player
inforation for the high-
scores list.

METHODS

Return Name Type/Parameters Description

static
CHighScores*

GetInstance void Get the instance of the CHighScores
Class.

void DeleteInstance void Deletes the instance.

void Update void This function updates the
CHighScores Class.

SUB-MODULES

PlayerData – a structure that holds the data of each player for the high-score list.

char* szName – Name of the player.

int nScore – Score of the player.

Page 52

CPauseMenu: public CGameState

Description: This module contains the pause menu and the functionally that is going to be
provided by it.

Stipulations: As a singleton, this object must be created and can exist only once within the entire
system. Invoking the GetInstance() method will either create or retrieve the object and its
functionality can be accessed through the result. At the end of its use, this object’s
DeleteInstance() method should be called, and all pointers to the object should be set to NULL
and not used otherwise risking access of bad memory.

Interface: This module will have to be accessed by the other menus that will branch off this menu.

MEMBERS

Name Type Description

m_xisControllerState XINPUT_STATE Stores the current controller state. . Why not
CXInput*??

m_pInstance CPauseMenu* Pointer to the main instance of the Pause Menu.

m_nSelectedOption int Determines which option in the pause menu is
selected.

METHODS

Return Name Type/Parameters Description

static
CPauseMenu*

GetInstance void Get the instance of the CPauseMenu
Class.

void DeleteInstance void Deletes the instance.

void Update Double dElapsedTime –
Time elapsed from the
previous call to this
function.

This function updates the
CPauseMenu Class.

SUB-MODULES

Page 53

CPlayState: public CGameState

Description: This is the game play state class. It contains information related only to game play. It
will initialize each level prior to the beginning of play and will process gameplay inputs.

Stipulations: This module is a game state system inheriting from CGameClass. It is a singleton.

Interface:

MEMBERS

Name Type Description

m_pInstance CPlayState* Static pointer to Play State singleton object.

m_xisControllerState XINPUT_STATE Stores the current controller state.

m_nCurrentLevel int Current level number.

m_nDifficulty int Current difficulty rating.

METHODS

Return Name Type/Parameters Description

CPlayState* GetInstance void Creates the first and only instance of this class
and returns its memory address.

void DeleteInstance void Deletes the instance of this class.

bool Init void This function initializes the state upon switching
to the state.

void Update void This function handles time based update
mechanics.

void Exit void This function handles the shutdown of the state
before a new state is activated.

SUB-MODULES

Page 54

CAttractState: public CGameState

Description: This module plays a movie in the menu background after a period of user inactivity.
The idea is to get the player intrigued by the demo of gameplay, and thus play the game.

Stipulations: This menu state will be called after a period of inactivity in the menu. The Init()
function must be called to properly set up the background mesh and the animated texture. Exit()
must be called to free the mesh and to call the animated texture’s Unload() function.

Interface: This is a state within the menu system state machine. All necessary interaction will be
handled internally by that system.

MEMBERS

Name Type Description

m_pAnimTexture CAnimatedTexture* The animated texture on which the movie is
played

m_pBackgroundMesh LPD3DXMESH The mesh on which the texture will be
rendered to

m_xisControllerState XINPUT_STATE Stores the current controller state.

METHODS

Return Name Type/Parameters Description

bool Init void Initializes the animation

void Update void Updates the animated texture

void Exit void Deallocates any memory and
unloads the animated texture

void Render void Renders the movie

SUB-MODULES

Page 55

Game State System and Input Wrapper

Page 56

CBase3D: public IBaseInterface

Description: This is this abstract class interface for all the main objects in the game. It handles
collisions and has the code to manipulate the objects position in 3D space. Objects that derive
from this are CStatic, CParticle, CMovingEntity.

Stipulations: The CBase3D is an abstract base class and can not be instantiated by itself. You
can only create objects that derive from this class.

Interface: This module provides the basic interface for all the objects. Other then providing a
basic interface for the inherited objects, this class will be used as the generic parent type for
function calls that need to act on it’s children. It invokes the math functionality of DirectX to do
the translations and rotations.

MEMBERS

Name Type Description

m_matOrientation D3DXMATRIX 4x4 matrix that holds the position and
orientation of the object in the world.

m_ObType enum This enumeration holds values of the
different types of objects that derive
from CBase3D. Used when checking
the objects against each other with
detections.

m_nType Short The type of the object

m_fMass float The mass of the object used for
computing “semi-realistic” physics.

m_vecVelocity D3DVECTOR3 The velocity of the object

m_vecAcceleration D3DVECTOR3 The acceleration on the object

m_vecForce D3DVECTOR3 The net force acting on the object.

m_fRadius Float[] collision sphere radius

Page 57

CBase3D METHODS

Return Name Parameters Description

D3DXMATRIX GetOrientation void Gets the object’s orientation
matrix

void SetOrientation D3DXMATRIX Sets the object in the world
with set orientation and
position

void TransX Float distance Translates the object in the
direction of its Right vector.

void TransY Float distance Translates the object in the
direction of its Up vector.

void TransZ Float distance Translates the object in the
direction of its Look vector.

void Trans D3DVECTOR3 Translates the object in the
direction of a vector in the
objects local world.(needed
after doing physics based on
force and mass)

void RotateX Float angle Rotates the object around its
Right vector

void RotateY Float angle Rotates the object around its
Up vector

void RotateZ Float angle Rotates the object around its
Look vector

void Update void Updates the object according
to the elapsed time

void Render void overwritten to render whatever
the given object is(mesh,
particle, billboard)

bool Check Collision CBase3D* Checks the collision of this
object and the passed in one.

SUB-MODULES

Page 58

CStatic: public CBase3D, public IListener

Description: These objects typically are not moving in the game world although they might. They
are mainly obstacles the player will have to maneuver around. They are visually represented by
either a billboard or mesh.

Interface: CStatics react to collisions from other objects in the world. They can handle events
using the Events system.

MEMBERS

Name Type Description

m_nMesh Unsigned int Index based on DXwrapper

METHODS

Return Name Parameters Description

void Update void Updates the object according
to the elapsed time

void Render void overwritten to render
whatever the given object
is(mesh, particle, billboard)

bool Check Collision CBase3D* Checks the collision of this
object and the passed in
one.

Void HandleEvent CEvent* pEvent Handles events that involve
this object

Void InitMesh Void Initializing the mesh

Page 59

CParticle

Description: Contain the information about an individual partices lifetime such as color, scale,
position changes.

Interface: Initializes with information read in with files that are created with the particle editor.

MEMBERS

Name Type Description

m_vecPos D3DXVECTOR3 The position the particle starts at
relative to the Emmision point
contained by the Orientaion matrix it
gets by deriving from CBase3D

m_vecVel D3DXVECTOR3 The velocity of this particle

m_fAge Float How old the particle is in its lifetime

m_Emitter CEmitter* The emitter that corresponds to this
particle

Page 60

CEmitterTemplate

Description: One of these exists for each different type of particle effect in the game. It holds the
data that emitters will use throughout the game.

Interface: read in a file that can be edited by the Particle Editor.

Name Type Description

m_nImageID Int Number corresponding to the
image used for the particle in
the texture manager.

m_fMedianAge Float The average age a particle
can be.

m_fAgeVariance Float The range in age a particle
can be.

m_nSourceBlend Int interpolation

m_nDestinationBlend Int interpolation

m_chStartColor UChar[4] The color a the particles of
this type of emitter will start
at.

m_chEndColor UChar[4] The color a the particles of
this type of emitter will end at.

m_fStartScale Float The scale the particles of this
type of emitter will start at.

m_fEndScale Float The scale the particles of this
type of emitter will end at.

M_bisRadial Bool Is the emitter radial or not?

M_bisLooping Bool Is the smitter looping or not?

M_fspeed Float Speed of the particles in this
type of emitter.

M_vecDir D3DXVECTOR3 The direction of the particles
in this type of emitter.

m_fSpawnRate Float The rate atwhich the particles
are created.

METHODS

Return Name Paramters Description

Void LoadEmitterTemplate Void Fills in this type of emitters
data by reading in a file
that can be edited with the
particle editor.

Page 61

CEmitter: public CBase3D, public IListener

Description: Object controls the emission of given particles contains all the same information as
a particle so it can fill out each individual particle with that information.

Interface: Creates the particles specific to this emission

MEMBERS

Name Type Description

m_vParticles Vector<CParticle> List of all the living particles.

m_vecPos D3DXVECTOR3 The position of the emitter.

m_EmitterTemplate CEmitterTemplate* The Emitter Template that
corresponds to this emitter

METHODS

Return Name Paramters Description

Bool

CheckCollision CBase3D* Checks the collision based
on the particle emissions
position and the passed in
CBases collision sphere.
This is mainly for the laser,
because the position of the
emitter will be where it
collides

void CreateParticle void Creates a CParticle and
pushes it into the vector of
all particles for this
emission

Void Update Void Updates the particles in
the emission during their
lifetimes

Void Render Void Renders the particle
emission to the screen.

Void HandleEvent CEvent* pEvent Handles events that
involve this object

SUB-MODULES

Page 62

 CMovingEntity: public CBase3D

Description: These object are the primary moving objects in the game, including the Player,
Enemies, and weapons. This class serves primarily as a template for the aformentioned objects.

Interface: This class defines more features required by the moving objects of the game. This
class will not be used directly by outside code.

MEMBERS

Name Type Description

m_nMesh Unsigned int Index based on DXwrapper

m_nMaxHealth Short The maximum health of the object

m_nCurHealth Short The Current health of the object

m_bState bool Current state of the object(dead or
alive)

m_dwLastShot double The timer governing the rate this
object can fire a weapon

m_dwLastSensor double The timer governing the rate this
object can fire a sensor

m_fShotRate float The rate the object fires at

m_fSensorRate Float The rate the object can drop
sensors

m_fMaxSpeed float The max speed this object can
travel through the world at

m_pEmitter CEmitter * The emitter pertaining to this
object(trails behind enemies and
players and possibly emissions for
the engines of the missiles)

METHODS

Void Update Void Updates the objects based
on the time pased

Void Render Void Renders the objects model
or partical to the screen

bool Check Collision CBase3D* Checks the collision of this
object and the passed in
one.

Void HandleEvent CEvent* pEvent Handles events that
involve this object

SUB-MODULES

Page 63

CWeapon: public CMovingEntity, public IListener

Description: The different types of weapons that the players and enemies use in the game.
These objects have different properties based on the value of an enumeration and a file that can
be edited.

Interface: The weapons are editable by the object editor. There are ship and enemy versions
alike but are separated for collision reasons.

MEMBERS

Name Type Description

m_eWeaponTypes Enum There are 2 versions of weapon
with 3 for the ship weapons and 3
for the enemies

m_nWeaponType Short Current type the weapon is

m_nMissileDmg Short The dmg done by missile weapons

m_nLaserDmg Short The dmg done by laser weapons

m_nMineDmg Short The dmg done by mineweapons

METHODS

Return Name Parameters Description

Void Update Void Updates the objects based
on the time pased

Void Render Void Renders the objects model
or partical to the screen

bool Check Collisions CBase3D* Checks the collision of this
object and the passed in
one.

Void HandleEvent CEvent* pEvent Handles events that
involve this object

void InitWeapon Void initializes the weapon
based on the types and
reads in the appropriate
file that has the
information about the
weapon.

SUB-MODULES

Page 64

CPlayer: public CMovingEntity, public IListener

Description: these objects control the players ship and get input in the update function. The
player is able to choose 3 different ways to play (the differnet ships are heavy, medium, and light
with different stats)

Interface: depending on what ship the player is going to play as, this object will initialize based on
the information read in at the beginging of the game.

MEMBERS

Name Type Description

m_nShipType Short The ships type

m_eShipTypes enum Enumeration containing values for the
different type of ships
Player(Light,Medium,Heavy) and
Enemy(Light, Medium, Heavy)

m_nHealth Short The amount of health the player has.

m_nLives Short How many lives are left.

m_nShipType Short The type of ship the player is using

m_eShipTypes Enum Enumeration holding values of the different
types of ships

m_nMaxMissile Short The max number of missiles that the player
can have based on the type of ship he has

m_nMaxMines Short The max number of mines the player can
have based on the type of ship he has

m_nNumMissile Short The current number of missiles that the
player has

m_nNumMines Short The current number of mines that the
player has

METHODS

Return Name Paramerters Description

Void Update Void Updates the objects based on the
time pased

Void Render Void Renders the objects model to the
screen

bool Check Collisions CBase3D* Checks the collision of this object
and the passed in one.

Void HandleEvent Cevent* pEvent Handles events that involve this
object

void InitShip Void initializes the ship based on its
type (heavy,medium,light) and
reads in the apropriate file for that
ship type.

Page 65

CEntityBaseState

Description: This is the enemy AI state base class. It contains no information. Its purpose is to
provide a basic template for all state modules.

Stipulations: This module is an abstract base of the entity state system. Each enemy AI state will
inherit its functionality from this module. It is a templated module so that it may be used by the
enemies as well as potentially for players if neccesary.

Interface: The functions in this class are virtual functions that must be redefined by child classes.

METHODS

Return Name Type/Parameters Description

bool Init T* This function initializes the state upon switching to the
state.

Void Update T* This function handles time based update mechanics.

Void Exit T* This function handles the shutdown of the state before
a new state is activated.

Page 66

CAIHuntingState: public CEntityBaseState

Description: This is the game play state class. It contains information related only to game play. It
will initialize each level prior to the beginning of play and will process gameplay inputs.

Stipulations: This module is a game state system inheriting from CGameClass. It is a singleton.

MEMBERS

Name Type Description

m_pInstance CAIHuntingState* Static pointer to Hunting State singleton object.

METHODS

Return Name Type/Parameters Description

CAIHuntingState* GetInstance void Creates the first and only
instance of this class and
returns its memory address.

Void DeleteInstanceblaaaaaarghhh void Deletes the instance of this
class.

Bool Init Cenemy* This function initializes the
state upon switching to the
state.

Void Update Cenemy* This function handles time
based update mechanics.

Void Exit Cenemy* This function handles the
shutdown of the state before
a new state is activated.

SUB-MODULES

Page 67

CAITrappingState: public CEntityBaseState

Description: This is the game play state class. It contains information related only to game play. It
will initialize each level prior to the beginning of play and will process gameplay inputs.

Stipulations: This module is a game state system inheriting from CGameClass. It is a singleton.

MEMBERS

Name Type Description

m_pInstance CAITrappingState* Static pointer to Trapping State singleton object.

METHODS

Return Name Type/Parameters Description

CAITrappingState* GetInstance void Creates the first and only instance of
this class and returns its memory
address.

Void DeleteInstance void Deletes the instance of this class.

Bool Init void This function initializes the state upon
switching to the state.

Void Update void This function handles time based
update mechanics.

Void Exit void This function handles the shutdown of
the state before a new state is
activated.

SUB-MODULES

Page 68

CAIWanderingState: public CEntityBaseState

Description: This is the game play state class. It contains information related only to game play. It
will initialize each level prior to the beginning of play and will process gameplay inputs.

Stipulations: This module is a game state system inheriting from CGameClass. It is a singleton.

MEMBERS

Name Type Description

m_pInstance CAIWanderingState * Static pointer to State singleton object.

METHODS

Return Name Type/Parameters Description

CAIWanderingState * GetInstance void Creates the first and only instance of
this class and returns its memory
address.

Void DeleteInstance void Deletes the instance of this class.

Bool Init CEnemy* This function initializes the state upon
switching to the state.

Void Update Cenemy* This function handles time based
update mechanics.

Void Exit Cenemy* This function handles the shutdown of
the state before a new state is
activated.

SUB-MODULES

Page 69

CEnemy: public CmovingEntity, public Ilistener

Description: These objects are computer enemies with AI behavioral mechanics. The type of ship
used is determined by the current level and difficulty settings.

Interface: This object will read in appropriate stats based on the type of enemy ship.

MEMBERS

Name Type Description

m_pAIState CAIBaseState* Pointer to current AI state

M_nShipType short The type of ship the enemy is using

m_eShipTypes enum Enumeration holding values of the different types of
ships

m_nMaxMissile short The max number of missiles that the enemy can have
based on the type of ship he has

m_nMaxMines short The max number of mines the enemy can have based
on the type of ship he has

m_nNumMissile short The current number of missiles that the enemy has

m_nNumMines short The current number of mines that the enemy has

METHODS

Return Name Type/Parameters Description

void Update void Updates the objects based on the time passed

void Render void Renders the objects model to the screen

bool Check Collision CBase3D* pBase3D Checks the collision of this object and the
passed in one.

void HandleEvent CEvent* pEvent Handles events that involve this object

void InitShip void initializes the ship based on its type
(heavy,medium,light) and reads in the
apropriate file for that ship type.

Page 70

Object Module Hierarchy

Page 71

CGameClass

Description: This module is the primary data containment and management component of this
game. This class is responsible for initializing and maintaining all of the singleton wrapper
classes.

Stipulation: This module is a singleton class, it is the primary communications point between the
main windows framework and the game modules.

Interface: This object will handle loading of initial memory items as well as changing between
menu and play states.

MEMBERS

Name Type Description

m_pCurrentState CGameState* Pointer to current Game State

m_pD3D CDirect3D* Pointer to Direct 3D object.

m_pDI CSGD_DirectInput* Pointer to DirectInput wrapper object

m_pDS CSGD_DirectSound* Pointer to DirectSound wrapper object.

m_pTM CSGD_TextureManager* Pointer to TextureManager wrapper object.

m_pWM CSGD_WaveManager* Pointer to WaveManager wrapper object.

m_pOF CSGD_ObjectFactory<string,
CBase3D>*

Pointer to ObjectFactory wrapper object.

m_pOM CSGD_ObjectManager* Pointer to ObjectManager wrapper object.

m_pDis CSGD_Dispatcher* Pointer to Event Dispatcher wrapper object.

m_pMS CSGD_MessageSystem* Pointer to Message System wrapper object.

m_nScreenHeight int Local storage for current screen height.

m_nScreenWidth int Local storage for current screen width.

m_bWindowed bool Local storage for current windowed mode.

m_pShip CPlayer* Pointer to current player ship.

m_pInstance CGameClass* Static pointer to GameClass singleton
object.

Page 72

CGameClass METHODS

Return Name Type/Parameters Description

CGameClass* GetInstance void Creates the first and only instance of
this class and returns its memory
address.

void DeleteInstance void Deletes the instance of this class.

bool GameInit HINSTANCE hInstance,

HWND hWnd,

int nWidth,

int nHeight,

bool bWindowed,

bool bVsync

Function to initialize the gameclass
object and neccesary wrapper objects
prior to main game loop.

bool GameMain void Main game loop functionality for time
based actions.

bool GameShutdown void Clean up memory contained within
the gameclass object and shutdown
all wrapper instances.

private void ChangeState CGameState* newState Change game states between menus
and play state.

void GameMessageProc CBaseMessage* pMsg Handle all messages internal to the
game.

SUB-MODULES

	World Editor
	GUI Components
	Graphics Engine
	Tile System
	Sound Engine
	Particle Engine
	Animated Textures
	Asset Caching
	Message and Event System
	Physics System
	Game State Machine

